Effects of Cement Dust on the Physiological Activities of Arabidopsis thaliana
نویسنده
چکیده
Corresponding Author: Saeid Abu-Romman Department of Biotechnology, Faculty of Agricultural Technology, Al-Balqa’ Applied University, Al-Salt 19117, Jordan Tel: ++962 5 3532519; Fax: ++962 5 3530469. Email:[email protected] Abstract: Air pollution exerts detrimental effects on plant ecosystems and restricts agricultural productivity. Cement dust is considered to be one of the most harmful air pollutants of industrial origin and is a limiting factor for plant growth and productivity. This study aims to uncover the impacts of cement dust on photosynthetic pigments, protein content, hydrogen peroxide (H2O2) accumulation, lipid per oxidation and antioxidant enzyme activities of Arabidopsis thaliana. In this study, Arabidopsis plants were dusted with cement at a rate of 1.5 g per 1-m area and measurements were undertaken at 10 days after cement dust application. Treatment with cement dust resulted insignificant reductions in chlorophyll content and total soluble protein accumulation. Neither carotenoid nor starch content of Arabidopsis plants was affected by exposure to cement dust, whereas protease activity was significantly enhanced in cement dust-treated plants. Furthermore, exposure to cement dust significantly enhanced the production of H2O2, a product of oxidative stress, in the leaves of Arabidopsis plants. Moreover, Malondialdehyde (MDA) content, a product of lipid per oxidation, significantly increased after exposure to cement dust. In response to cement dust, activities of scavenging enzymes such as Ascorbate Peroxides (APX), Superoxide Dismutase (SOD) and Guaiacol Peroxidase (GPX) increased, whereas the activity of Catalase (CAT) activity decreased. The present results suggest that cement dust induced oxidative stress in Arabidopsis plants through the generation of Reactive Oxygen Species (ROS), induction of lipid peroxidation and up regulation of antioxidant enzyme activities.
منابع مشابه
Negative control of Strictisidine synthase like-7 gene on salt stress resistance in Arabidopsis thaliana
Strictosidine synthase-like (SSL) is a group of gene families in the Arabidopsis genome, which whose orthologues in other plants are key enzymes in mono-terpenoid indole-alkaloid biosynthesis pathway. The SSL7 is upregulated upon treatments of Arabidopsis plants with signaling molecules such as SA, methyl jasmonate and ethylene. To find the functional role of the gene, a T-DNA-mediated knockout...
متن کاملمشکلات روشهای موجود و ارائه دو روش جدید کشت هیدروپونیک گیاه آرابیدوپسیس تالیانا
Arabidopsis thaliana is a suitable model plant for genetic and molecular biology studies in higher plants. However, its hydroponic culture for biochemical and physiological studies is a challenge due to small size, capillary roots and little biomass at maturity. Several cultural systems have been suggested for Arabidopsis thaliana hydroponic culture, each having special advantages and disadvant...
متن کاملGene transcriptomic profile in arabidopsis thaliana mediated by radiation-induced bystander effects
Background: The in vivo radiation-induced bystander effects (RIBE) at the developmental, genetic, and epigenetic levels have been well demonstrated using model plant Arabidopsis thaliana (A. thaliana). However, the mechanisms underlying RIBE in plants are not clear, especially lacking a comprehensive knowledge about the genes and biological pathways involved in the RIBE in plants. Materials and...
متن کاملYeast Two Hybrid cDNA Screening of Arabidopsis thaliana for SETH4 Protein Interaction
SETH4 coding sequence with 2013 bp is a member of gene family expressed in gametophytic tissues of Arabidopsis thaliana. This fragment was PCR amplified using Kod Hi Fi DNA polymerase enzyme. This fragment was cloned into pGBKT7 bate vector and transformed E. coli DH5? cells containing vector were selected on LB medium containing Kanamycin. Finally, pGBKT7-SETH4 bate was transformed into yeast ...
متن کاملFunctional analysis of glycin rich- RNA binding protein, a suppressor of trehalose-6-phosphate mediating growth arrest in Arabidopsis thaliana
Metabolism of the alpha-1,1 glucose disaccharide, trehalose, is indispensable in plants. In the Murashigeand Skoog (MS) medium, trehalose inhibits plant growth and allocation of carbon to roots. A suppressorof trehalose-6-phosphate (T6P) mediated growth arrest, GR-RBP2, is characterized in more detail.Phylogenetic analysis revealed that GR-RBP2 is a protein of likely prokaryot...
متن کامل